Linear Programming (LP)

Some Definitions

The **solution** of an LP is a vector of \mathbb{R}^n representing the values for the variables.

A solution that satisfies all the constraints (functional and sign) is a **feasible solution (FS)**. A solution that does not satisfy at least one of the constraints is a **non feasible solution (NFS)**.

The set of all the feasible solutions is the feasible region (FR).

An **optimal solution (OS)** is a feasible solution that has the most favourable (the maximum or the minimum) value of the objective function (OF).

When there is more than one optimal solution the problem has **alternative optimal solutions**.

The optimum value (Z*) is the value of the objective function at an optimal solution.

An **activity analysis problem** (for instance, the Wyndor Glass Co. problem) in its simplest version can be defined as follows:

i = 1, 2, ..., m resources or other requirements (plants)

j = 1, 2, ..., n activities (products)

 x_{i} level of activity j (units produced)

Z global performance measure (profit)

parameters of the model

 c_{j} (j = 1, 2, ..., n) OF' coefficients (profit of product j)

 b_i (*i* = 1, 2, ..., *m*) right-hand-side (capacity of plant *i*)

 a_{ij} (*i* = 1,2,...,*m*; *j* = 1,2,...,*n*) technical coefficient (labour hours of plant *i* per unit of product *j*)

standard form

$$Z^* = Max \ Z = \sum_{j=l}^{n} c_j x_j$$

s. to:
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i \quad i = 1,...,m \\ x_j \ge 0 \quad j = 1,...,n \end{cases}$$
 functional constraints sign constraints

Hypotheses of the LP Model

(H1) proportionality:

The contribution of each activity (*j*) to the value of the objective function *Z* is proportional to the level of the activity $(c_i x_i)$.

The contribution of each activity to the left-hand-side of each functional constraint is proportional to the level of the activity $(a_{ij}x_j)$.

(H2) additivity: $x_k x_k$

Every function in an LP model is the sum of the individual contributions of the respective activities.

- **(H3) divisibility:** $\forall j, x_i \in \mathbb{R}$.
- (H4) certainty: The value assigned to each parameter of an LP model is assumed to be a known constant.

LP Properties

- Property 1: The feasible region of an LP problem is either an empty set or a convex set.
- **Property 2:** If the feasible region of an LP problem is nonempty and bounded then at least an optimal solution exists.
- **Property 3:** If an LP problem has optimum then at least one of its corner point feasible solutions (CPF) is an optimal solution.
- **Property 4:** Considering an LP problem with optimum, if a CPF has no adjacent CPF with a more favourable value for the OF, then that point is an optimal solution.

Graphical Solution Method for LP Problems

Graphical resolution of problems with two decision variables.

- 1°) Represent the feasible region (FR)
 - a. From the sign constraints, identify the corresponding half-plan
 - b. Identification of the half-plan representing each of the functional constraints (design the associate line and identify the half-plane for the related constraint)
 - c. Define the FR as the intersection of all the half-planes identified. If $FR = \emptyset$ the problem is infeasible, otherwise proceed.
- **2**^{**o**}) Identify, if any, the optimum (s):
 - a. Represent a line level of the OF (set Z to an arbitrary value) and identify the half-plane conducting to better values of Z
 - b. Identify the optimal solution as the corner feasible point(s) with the best value of Z, or conclude that the problem has an unbounded solution.

Solving LP Problems by the Solver/Excel

Example – Wyndor Glass Co. – the data and all formulas needed are written in an Excel spreadsheet. Create a column for each decision variable (columns "C" and "D") and a row for each functional constraint (rows 3 - 5) and for the OF (row 6), with the respective data. Set the decision variables values to zero (row 7). Formulas in column "E" are the left-hand side of the functional constraints and the OF. The right-hand sides of the constraints are in column "G".

Solver – Specification of the OF cell (E6), of the objective ("Max" or "Min") and of the cells for the decision variables values (C7:D7). Definition ("Add") of the functional constraints (E3:E5<=G3:G5).

🗾 A	В	С	D	E	F	G
1		Production time per batch (h)				
2		doors	windows			Capacity
3	F1 (h)	1	0	0		4
4	F2 (h)	0	2	0		12
5	F3 (h)	3	2	0	_ ≤	18
6	Profit	3	5	0		
7	N. batches of	0	0			

Solver Parameters	? 🛛
Set Target Cell: SE\$6	<u>S</u> olve
Equal To:	Close
\$ubiast to the Constraints:	Options
\$E\$3 <= \$G\$3 Add \$E\$4 <= \$G\$4	Premium
\$E\$5 <= \$G\$5	<u>R</u> eset All
Add Constraint	<u>H</u> elp
Cell Reference: Constraint: \$E\$3 (\$\$ <= V =\$G\$3 (\$\$	
OK Cancel <u>A</u> dd <u>H</u> elp	

Solver – In the solver options, the model must be defined as a linear one with non-negative variables. To get the optimal solution the "Solve" button should be activated.

Solver Parameters	
Set Target Cell: \$E\$6	
Equal To: • Max • Min • Value of: 0 • By Changing Cells:	Close
\$C\$7:\$D\$7	Guess
	Options
\$E\$3 <= \$G\$3 \$E\$4 <= \$G\$4	Add Premium
\$E\$5 <= \$G\$5	
	Solver Options
	Max Time: 100 seconds OK
	Iterations: 100 Cancel
	Precision: 0,000001 Load Model
	Tolerance: 5 % Save Model
	Convergence: 0,001 Help
	✓ Assume Non-Negative
	Derivatives Search
	© Tangent © Eorward © Newton
	C Quadratic C Central C Conjugate

Solution – The optimal solution is then identified or it is claimed that no solution exist. If a solution exists, the output reports may be written.

	А	В	С	D	E	F	G			
1			Production tim	e per batch (h)						
2			doors	windows			Capacity			
3		F1 (h)	1	0	2	≤	4			
4		F2 (h)	0	2	12	≤	12			
5		F3 (h)	3	2	18	2	18			
6		Profit	3	5	36					
7		N. batches of	2	6						
8										
9			Solver Results							
10			Solver fou	Solver found a solution. All constraints and optimality conditions are satisfied.						
11			conditions							
12				Keep Solver Solution						
13			(⊙ <u>K</u> ee							
14			O Resi	ore <u>O</u> riginal Values			<u> </u>			
15				Cancel	Save Scepario		Help			
16										

Solution – Interpretation of the solution based on the *Solver* reports.

Microsoft Excel 9.0 Answer Report

Target C	cell (Max)						
Cell	Name	Original Value	Final Value	_			
\$E\$6 Profit		0	36	Optimum	Optimum Value		
Adjustak	ole Cells						
Cell	Name	Original Value	Final Value				
\$C\$7	N. batches of doors	0	2	🛛 🏹 Optimal	Solution		
\$D\$7	N. batches of windows	0	6		1		
Constrai	ints						
Cell	Name	Cell Value	Formula	Status	Slack		
\$E\$3	F1 (h)	2	\$E\$3<=\$G\$3	Not Binding	2		
\$E\$4	F2 (h)	12	\$E\$4<=\$G\$4	Binding	0		
\$E\$5	F3 (h)	18	\$E\$5<=\$G\$5	Binding	0		

Microsoft Excel 9.0 Sensitivity Report

Adjustable Cells					
	Final	Reduced	Objective	Allowable	Allowable
Cell Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$7 N. batches of doors	2	0	3	4,5	3
\$D\$7 N. batches of windows	6	0	5	1E+30	3

Constraints					
	Final	Shadow	Constraint	Allowable	Allowable
Cell Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$3 F1 (h)	2	0	4	1E+30	2
\$E\$4 F2 (h)	12	1,5	12	6	6
\$E\$5 F3 (h)	18	1	18	6	6

Answer – It should be produced 2 batches of doors and 6 of windows, every week. In F1 two of the four hours are used. In F2 and F3 all the production time available per week is used, *12* and *18* hours, respectively.